The Review Problems on the next 3 pages ARE NOT COMPREHENSIVE REVIEW FOR THE FINAL.

However, they do give several of the two types of word problems most commonly confused by students, namely

- · Related Rates
- · Optimization

The Review Problems on the last two pages are also not comprehensive final exam review.

However, they cover topics which are often difficult for students, namely:

- · Volumes
- · ln(x)
- · ex

CALCULUS WORD PROBLEMS	Optimization
Related Rates Variables usually several variables Variables usually several variables	if more than two, use secondary to subst for one.
always in all dange with me unless specified, all change with me	wkt independent variable
derivative always wet t=time chain rule d(var) for every variable	variable requested.
solve for rate requested method differentiate, subst, isolate.	differentiate find CV
method differentials, many	4st or 2nd derive to max or min.
special notes! no secondary egn.	primary = function to differentiale secondary = eq'n With value, solve t subst (algebra)
time is always essential	time is not usually included
units: per min (or sec or hour)	as given in question

Math 250 Review Problems

1) Find the absolute extrema of the function on the closed interval

a.
$$f(x) = \frac{2x}{x^2 + 1}$$
, $[-2,2]$

b.
$$h(t) = \tan\left(\frac{\pi t}{8}\right), [0,2]$$

2) Differentiate

a.
$$g(x) = \ln(x^x)$$

$$b. \quad f(x) = (\ln x)^x$$

c.
$$k(x) = \sqrt{7}^{\sqrt{7}x}$$

d.
$$h(x) = \sqrt{7}^{\sqrt{7}x}$$

Solve the problem.

- 3) Water is falling on a surface, wetting a circular area that is expanding at a rate of 9 mm^{2/s}. How fast is the radius of the wetted area expanding when the radius is 131 mm? (Round your answer to four decimal places.)
- 4) A piece of land is shaped like a right triangle. Two people start at the right angle of the triangle at the same time, and walk at the same speed along different legs of the triangle. If the area formed by the positions of the two people and their starting point (the right angle) is changing at ^{3 m2/s}, then how fast are the people moving when they are ^{3 m} from the right angle? (Round your answer to two decimal places.)
- 5) One airplane is approaching an airport from the north at 157 km/hr. A second airplane approaches from the east at 299 km/hr. Find the rate at which the distance between the planes changes when the southbound plane is 27 km away from the airport and the westbound plane is 23 km from the airport. Round to the nearest whole number.
- 6) Water is being drained from a container which has the shape of an inverted right circular cone. The container has a radius of 7.00 inches at the top and a height of 9.00 inches. At the instant when the water in the container is 8.00 inches deep, the surface level is falling at a rate of 1.4 in./sec. Find the rate at which water is being drained from the container. Give an exact answer and one rounded to the nearest whole number.
- 7) A man 6 ft tall walks at a rate of 3 ft/sec away from a lamppost that is 23 ft high. At what rate is the length of his shadow changing when he is 60 ft away from the lamppost? (Do not round your answer)
- 8) Electrical systems are governed by Ohm's law, which states that V = IR, where V = voltage, I = current, and R = resistance. If the current in an electrical system is decreasing at a rate of 6 A/s while the voltage remains constant at 12 V, at what rate is the resistance increasing (in Ω /sec) when the current is 60 A? (Do not round your answer.)
- 9) The radius of a right circular cylinder is increasing at the rate of 5 in./sec, while the height is decreasing at the rate of ^{2 in./sec}. At what rate is the volume of the cylinder changing when the radius is 13 in. and the height is 8 in.?

- 10) A rectangular field is to be enclosed on four sides with a fence. Fencing costs \$5 per foot for two opposite sides, and \$2 per foot for the other two sides. Find the dimensions of the field of area 790 ft² that would be the cheapest to enclose. Give exact answers, then rounded to the nearest tenth.
- 11) From a thin piece of cardboard 20 in. by 20 in., square corners are cut out so that the sides can be folded up to make a box. What dimensions will yield a box of maximum volume? What is the maximum volume? Give an exact answer, then one rounded to the nearest tenth.
- 12) A company is constructing an open-top, square-based, rectangular metal tank that will have a volume of 56.5 ft³. What dimensions yield the minimum surface area? Round to the nearest tenth, if necessary.
- 13) A private shipping company will accept a box for domestic shipment only if the sum of its length and girth (distance around) does not exceed 120 in. What dimensions will give a box with a square end the largest possible volume?

- 14) A long strip of sheet metal 12 inches wide is to be made into a small trough by turning up two sides at right angles to the base. If the trough is to have maximum capacity, how many inches should be turned up on each side?
- 15) Determine the dimensions of the rectangle of largest area that can be inscribed in a semicircle of radius 3.

16) A rectangular sheet of perimeter 39 cm and dimensions x cm by y cm is to be rolled into a cylinder as shown in part (a) of the figure. What values of x and y give the largest volume?

Challenge problems:

- 17) The volume of a sphere is increasing at a rate of 5 cm³/sec. Find the rate of change of its surface area when its volume is $\frac{256\pi}{3}$ cm³. (Do not round your answer.)
- 18) The volume of a rectangular box with a square base remains constant at 600 cm³ as the area of the base increases at a rate of 8 cm²/sec. Find the rate at which the height of the box is decreasing when each side of the base is 18 cm long. (Do not round your answer.)
- 19) The 10 ft wall shown here stands 33 feet from the building. Find the length of the shortest straight beam that will reach to the side of the building from the ground outside the wall. Round to the nearest tenth.

ANSWERS

- 1) a. max 1 at x=1, min -1 at x=-1 b. max 1 at x=2, min 0 at x=0
- 2) a. $g'(x) = \ln(x) + 1$ b. $f'(x) = (\ln x)^{x-1} [1 + \ln(\ln x) \cdot \ln(x)]$
 - c. $k'(x) = \ln \sqrt{7} \left(\sqrt{7}\right)^{\sqrt{7}x+1}$
 - d. $h'(x) = \frac{\left(\sqrt{7}\right)^{\sqrt{7}x+1}}{2\sqrt{x}}\left(1 + \ln\sqrt{7}x\right)$
- 3) 0.0109 mm/s
- 4) $\frac{9}{266\pi} mm/\sec \approx 0.0108 mm/\sec$
- 5) -313 km/hr
- 6) $\frac{-21952\pi}{405}$ in³ / sec, 170 in.³/s
- 7) $\frac{18}{17}$ ft/sec
- 8) $\frac{1}{50}\Omega/\text{sec}$
- 9) $702\pi \text{ in.} \frac{3}{\text{sec}}$
- 10) $5\sqrt{79}$ ft @\$5, $2\sqrt{79}$ ft @\$2; 17.8 ft @ \$5 by 44.4 ft @ \$2
- 11) $\frac{40}{3}in \times \frac{40}{3}in \times \frac{10}{3}in$, $V = \frac{16000}{27}in^3$; ~13.3 in. × ~13.3 in. × ~3.3 in.; $V = \sim 592.6^{\circ}in^3$
- 12) $4.8 \text{ ft} \times 4.8 \text{ ft} \times 2.4 \text{ ft}$
- 13) 20 in. \times 20 in. \times 40 in.
- 14) 3 in.

- 15) $\sqrt{6} \text{ in } x \frac{\sqrt{6}}{2} \text{ in }$
- 16) x = 13 cm; $y = \frac{13}{2}$ cm
- 17) $\frac{5}{2}$ cm²/sec
- 18) $-\frac{400}{27}$ cm/sec
- 19) 57.7 ft

	$\max at x = 2 (2, 1)$
1) Absolute extrema on interval	min 0 at x=0 = (0,0)
$a \cdot f(x) = 2x \text{on } [-2, 2]$ $x^2 + 1$	2) Differentiate
	$a. g(x) = ln(x^{x})$
CVs: $f'(x) = (x^2+1) \cdot 2 - 2x(2x)$ quohent $(x^2+1)^2$	$g(x) = x \ln(x)$
$= 2x^2 + 2 - 4x^2$	g'(x)=x.1+1.lnx product
= 2x + d = 1x	X
	g(x) = 1 + lnx
$= 2 - 2\chi^2$	b. f(x)= (lnx)x no log prop!
$(x^2+1)^2$	$y = (\ln x)^{x}$ In differentiation
2-2/2=0	$\ln y = \ln (\ln x)^{x}$ take \ln
2=3x2	Iny = x .ln(lnx) In properties
1=x2	
$x=\pm 1$ both in $[-2,2]$	$\frac{1}{y} \frac{dy}{dx} = \frac{X}{\ln X} \cdot \frac{1}{x} \cdot \frac{1}{\ln \ln(\ln x)} \cdot \frac{1}{\ln \ln \ln x} \cdot \frac{1}{\ln x} \cdot \frac{1}{x} \cdot \frac$
$\chi^2+1=0$ imaginary	1 dy = 1 + ln(lnx)
$x \mid f(x)$	y dx lnx
2 0.8	$dy = y \left(1 + \ln(\ln x) \right)$
-Z -D.8	$\frac{dy}{dx} = \frac{y}{\ln x}$
11 11 11 11 11 11 11 11 11 11 11 11 11	
	$\frac{dy}{dx} = \left(\ln x\right)^{x} \left(\frac{1}{\ln x} + \ln \left(\ln x\right)\right)$
max 1 at x=1 (1,1)	$dy = (\ln x)^{x} / 1 + \ln(\ln x) \cdot \ln x$
min - 1 at $x = -1$ $(-1, -1)$	4300 Marie Commence C
$b. h(t) = tan \left(\frac{\pi t}{8} \right) \text{ on } [0,2]$	
	AX
C.V.s h'(t) = sec (1 t) . T	c. K(X) = V7 V7X
	L'(X) = Inst. Jt. Jt chain rule
secx + o(ever)	$k'(x) = \ln \sqrt{7} \cdot \sqrt{7}$ chain rule $k'(x) = \ln \sqrt{7} \cdot \sqrt{7}$
h(t) and h(t) undefined	1 100
when trt= 17, 317, etc.	$h'(x) = \ln \sqrt{7} \cdot \sqrt{7} \cdot \sqrt{x} \cdot \sqrt{7} \cdot \sqrt{x}$ chain $\frac{1}{2}$ rule
0.44 62	the state of the s
$2\pi t = 8\pi$ $t = 4$ not in interval	h'(x) = InJ7 /7
	$\frac{1}{2\sqrt{x}}$
t h(t)	N. A.
2 1 AFA-4 T-2 = V	1 18
Anni	

(3) circle area
$$A = \pi r^2$$

$$\frac{dA}{dt} = +9 \frac{mm^2}{sec}$$
find $\frac{dr}{dt}$ when $r = 133 \text{ mm}$

$$\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$$

$$\frac{dA}{dt} = \frac{dr}{dt}$$

$$\frac{dA}{dt} \approx 0.0108 \frac{mm}{sec}$$
(4) right triangle
$$\frac{dA}{dt} = \frac{dA}{dt} = \frac{dA}{dt}$$

$$\frac{dA}{dt} = \frac{dA}{dt} = \frac{dA}{dt} = \frac{dA}{dt}$$

$$\frac{dA}{dt} = \frac{x}{dt}$$

$$3 = 3 \cdot \frac{dx}{dt}$$

$$\frac{1m}{sec} = \frac{dx}{dt}$$

$$\frac{1}{sec} = \frac{dx}{dt}$$

$$\frac{dy}{dt} = \frac{-157}{hr}$$

$$\frac{dy}{dt} = \frac{-157}{hr}$$

$$\frac{dx}{dt} = -\frac{299}{hr}$$

$$\frac{dx}{dt} = -\frac{299}{hr}$$

Find
$$\frac{dD}{dt}$$
 when $y=27 \text{ km}$
 $x=23 \text{ km}$

round nearest whole number

$$D = \sqrt{x^2 + y^2}$$

$$\frac{dD}{dt} = \frac{1}{2} (x^2 + y^2)^2 \left(2x \frac{dx}{dt} + 2y \frac{dy}{dt}\right)$$

$$\frac{dD}{dt} = \frac{x}{2} \frac{dx}{dt} + \frac{y}{2} \frac{dy}{dt}$$

$$\frac{dD}{dt} = \frac{(23)(-299) + (27)(-157)}{\sqrt{23^2 + 27^2}}$$

$$= \frac{-11116}{\sqrt{1253}}$$

$$\approx -313.4$$

$$\frac{dD}{dt} = \frac{7 \text{ in}}{hr}$$

$$\frac{dh}{dt} = -1.4 \text{ in} + \frac{h}{h} \frac{d}{dt}$$

$$\frac{dh}{dt} = -1.4 \text{ in} + \frac{h}{h} \frac{d}{dt}$$

$$\frac{dh}{dt} = -1.4 \text{ in} + \frac{h}{h} \frac{d}{dt}$$

$$\frac{dh = -1.4 \text{ in } + \text{ have } h}{dt}$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$\frac{dh}{dt} = -1.4 \text{ in } + \text{ have } h$$

$$3imilar \Delta s = \frac{7}{8}$$

$$9r = 56$$

$$r = 56 = 6\frac{2}{9}$$
in

But more importantly: h = 9 for all h&r

Substinto
$$V=\frac{7}{3}\pi r^2h$$
 to remove r.
$$V=\frac{1}{3}\pi \left(\frac{\pi}{4}h^2\right)h$$

$$V=\frac{1}{3}\pi \left(\frac{4\pi}{3}h^2\right)h$$

	(6) cont	
	V= 49 7 h3	dV = I · dR + R · dI product rule dt dt dt
	243	
	dV= 49 T. 3h2 dh	$0 = 60 \cdot dR + [.2] \cdot (-6)$
	dt 243 dt	dt
	$dV = 49\pi h^2 dh$	Find R: V=IR
	dt 81 dt	12=60.R
	$dV = 4917 (8)^2 \cdot (-1.4)$	0.2 = 1 = 12 = R
	dt 81	5 60 2
	$dV = -21952 \text{ or in}^3$	0 = 60 dR - 1.2
	**************************************	0 = 60 dR - 1.2
		1.2=60 dR
	2 170 in ³ Sec	dt
		5 1.2 - AR
7		$\frac{1.2 = dR}{60 dt}$
1	$\frac{dx}{dt} = \frac{3ft}{6f}$	dR-[10]-[0.029]
		$\frac{dR - \left[1 \Omega \right]}{dt} = 0.02 \Omega$ $\frac{dR}{50 \text{ sec}} = \frac{5 \text{ sec}}{5 \text{ sec}}$
	X Shadow	70000 TO
	find dk when x=60.	9 = dr=5in dh=-2in dt sec dt sec
	dt	
	similar triangles: want k	Find dy when r=13 in and h=8 in
	K = K+X	V= Tr2h
	6 23	
	23K= 6K+6X	dV = TT 2r dr. h + r2. dh] product rule dt dt dt dt]
	17K=6X	
	17 dk = 6 dx	$dV = 17[2.13.5.8 + 13^{2}.(-2)]$
	dt dt	
	17 dk = 6.3	$= 702 \text{ if } in^3$ $= 500$
	at 1	1 500 12
	dk = 18 ft	10 x y \$2/f+ A = 1790+t
	of 17 sec	h to
	8) V=IR V=voltage dV=0, V=12	
	I-current at sec	primary C-2(DX)+2(ZY)
	R= resistance find dr	U O' TO NI II
	when I=GOA.	secondary A= Xy=790 constraint
		1 AALIOLIOGISTI

	ont -1	$30-2\left(\frac{10}{3}\right)=30-30=\frac{40}{3}$ in
	Y= 190 = 790 x	
		dimensions 3 in x 40 in x 4g in exact
	C=10x+4(790x)	10210 x 13 2 10 x 13.8 IVI rearest
	C=10x+3160x	max volume 16000 in 3 2 592.6 in 7 tenth
	C'(x) = 10 - 3160 x = 0	max volume 16000 in 2 1516. Et
	10 = 3160	W- E/ F 103
	N.	12 V= 56.5 in ³ min surface area, notop.
	10/2= 2160	tenth. dimensions
	x2=316	
	X==316	$V = \chi^2 y = 56.5$ $y = 56.5$
	c' + 1 - 1+3 -1316 V + 1316	
	-1316 Y +1316	$A = \chi^2 + 4\chi \left(\frac{56.5}{\chi^2}\right)$
	min@x= \316 = 2\79	$A = \chi^2 + 226\chi$
and the second s	Y=790 = 10 \79 \79 = 5\79	
	2179 2179	$A'(x) = 2x - 226x^2 = 0$
	x=2√79 ft@ \$5/ft ≈ 17.8 ft	$2X = 226$ X^2
Comment and Profession Comment (Section	y=5√79 ft@ \$2/ft \ ≈ 44.4 ft	
(11)	X	$x^3 = 113$
and the same of th	20 m max volume, dimensions	X=3/113 ≈ 4.8 in
	exact, tenth	V= 56.5 ≈ 2.4 in
and the state of t	2.0	(3/13)2
	$V = (20 - 2x)^2 \cdot X = X(400 - 80x + 4x^2)$	$A'(x) \leftarrow 1 + 1 \rightarrow min$
	V = 400x - 80x2+4x3	
	$V'(x) = 400 - 160x + 12x^2 = 0$	dimensions 4.8 in x 4.8 in x 2.4 in
	$12x^2 - 160x + 400 = 0$	(3) & girth = 4x
	3x2-40x+100=0	accept: l+4x×120 in
	62-4ac= (-40)2-4(3)(100)= 400	max volume, find dimensions
	$\chi = 40 \pm \sqrt{400} = 40 \pm 20 = 60, 20$	V= x28
	2(3) 6 6 6	l+4x=120 → l=120-4x
	N-10 10	V= x (120-4x) = 120x2-4x3
and standarded	V'(x) + + + + + + + + + + + + + + + + + + +	$V'(x) = 240x - 12x^2 = 0$
	7 13 10/	12/2 (20-12)=0
complete of the control of the contr	$max @ X = \frac{10}{3} in$	X=0,20
	3	

$$\frac{25617}{3} = \frac{4\pi r^3}{3}$$

$$25617 = 417r^3$$

$$\frac{256}{4} = r^3$$

$$64 = r^3$$

$$r = \sqrt[3]{64} = 4$$

$$\frac{dA = 4\pi r^2}{dt} = 8\pi r \frac{dr}{dt}$$

Need
$$\frac{dr!}{dt}$$
 Back to $\frac{dV!}{dt}$

$$\frac{dV}{dt} = \frac{4\pi \cdot 3r^2 dr}{dt}$$

$$\frac{dV}{dt} = \frac{4\pi r^2 dr}{dt}$$

$$\frac{dV}{dt} = \frac{4\pi r^2 dr}{dt}$$

$$\frac{dr}{dt} = \frac{dr}{dt}$$

$$\frac{dA}{dt} = 8\pi(4)\left(\frac{5}{64\pi}\right)$$

$$\frac{dA}{dt} = \left[\frac{5}{2}\frac{cm^2}{sec}\right]$$

(B) Volume =
$$\chi^2 y = 600 \text{ cm}^3$$

 $\frac{dA}{dt} = 8 \text{ cm}^2$
 $\frac{dA}{dt} = 8 \text{ cm}^2$
Find the rate at which
the height of box is decreasing
when sides are $18 \text{ cm} = \chi$
Find $\frac{dy}{dt} < 0$.
 $\frac{dA}{dt} = 2 \text{ cm} = \chi$
 $\frac{dA}{dt} = 3 \text{ cm} = 2 \text{ cm} = \chi$

$$\frac{dy}{dt} = -1200 \times \frac{1}{4x} = -1200 \frac{dx}{dt}$$

$$\frac{dy}{dt} = -1200 \cdot 2 = -2400$$

$$\frac{dy}{dt} = -400 \text{ cm}$$

$$\frac{dy}{dt} = -400 \text{ cm}$$

$$\frac{dy}{dt} = 27 \text{ sec}$$

Find shortest L that will reach from ground to building.
nearest tenth.

$$\frac{10}{X} = \frac{4}{X+33}$$
 Similar triangles
$$\frac{10 - 4}{X+33} = \frac{4}{X+33}$$
 Similar triangles
$$\frac{10 \times + 330 = 4}{X} = \frac{4}{X}$$

$$\frac{10 \times + 330 \times -1}{X} = \frac{10 \times + 330 \times -1$$

L. L' (x) =
$$x + 33 - 3300 - 108900$$

\[
\begin{align*}
\lambda \text{numerator} & \frac{\chi^2}{\chi^2} & \frac{\chi^3}{\chi^2} & \frac{\chi^3}{\chi^2} & \frac{\chi^3}{\chi^2} & \frac{\chi^3}{\chi^2} & \frac{\chi^3}{\chi^2} & \frac{\chi^3}{\chi^3} & \frac{\chi^3}{\chi

Math 250 Review and Practice

- Consider the region bounded by $y = e^x$, y = 2, x = 0.
 - a. Find the area of this region. Evaluate this integral by hand, giving your answer in exact form.

b. Find the volume of the solid formed if this region is revolved about the x – axis. Evaluate this integral by hand, giving your answer in exact form.

c. SET UP AN INTEGRAL to find the volume of the solid formed if this region is revolved about the line y = 2.

d. SET UP AN INTEGRAL to find the volume of the solid formed if this region is revolved about the y – axis.

e. SET UP AN INTEGRAL to find the volume of the solid formed if this region is revolved about the line $x = 4$.
f. Let the region described above be the BASE of a solid, whose cross-sections perpendicular to the <i>x</i> – axis are EQUILATERAL TRIANGLES. SET UP AN INTEGRAL TO find the volume of this solid.
(Calculator required) Let R be the shaded region bounded by the graph of $y = \ln x$ and the line $y = x - 2$.
Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when <i>R</i> is rotated about:
a. The line $y = -3$.
b. The y axis.
c. The line $x = 4$

Math 250

Review and Practice

Volumes with logs and exp

- 1) Consider the region bounded by $y = e^x$, y = 2, x = 0.
 - a. Find the area of this region. Evaluate this integral by hand, giving your answer in exact form.

$$e^{x}=2$$

 $x=\ln 2$

$$e^{x}=2$$

$$x=\ln 2$$

$$\ln 3$$

$$\ln 3$$

$$= (2x - e^{x}) \Big|_{0}^{e_{x}}$$

$$=(2ln2-e^{ln2})-(2\cdot0-e^{\circ})$$

Find the volume of the solid formed if this region is revolved about the x – axis. Evaluate this integral by ℓ_n hand, giving your answer in exact form.

shells

washers
$$\pi R^2 - \pi r^2$$

$$\int \pi(2)^2 - \pi(e^x)^2 dx$$

$$= \pi \left[\int_{x=0}^{\ln 2} \frac{\ln 2}{1 + dx} - \frac{1}{2} \int_{0}^{2x} \frac{2x}{dx} \right]$$

$$u=2x$$
 $du=2dx$

c. SET UP AN INTEGRAL to find the volume of the solid formed if this region is revolved about the line y = 2.

$$\int_{0}^{\infty} \pi (2-e^{x})^{2} dx$$

$$= \left| \frac{\ln 2}{\pi \int_{0}^{\infty} (2 - e^{x})^{2} dx} \right|$$

disks
$$\pi r^2$$

ln2
$$\int \pi (2-e^x)^2 dx = \left[\pi \int (2-e^x)^2 dx \right] = \left[\frac{2\pi r}{2\pi r} \int \frac{1}{r} y(\ln y) dy \right]$$

d. SET UP AN INTEGRAL to find the volume of the solid formed if this region is revolved about the

$$\int_{2\pi}^{\ln 2} x(2-e^{x}) dx$$

$$\frac{\text{shells}}{=\int_{-\infty}^{\infty} 2\pi (4-x)(2-e^{x}) dx}$$

$$= \int_{-\infty}^{\infty} 2\pi (4-x)(2-e^{x}) dx$$

$$x=0$$

$$= \begin{cases} 2\pi \int_{0}^{\pi} (4-x)(2-e^{x})dx \\ 0 \end{cases}$$

$$\frac{\text{washers}}{\int_{0}^{2} \pi(4)^{2} - \pi(4 - \ln y)^{2} dy}$$

Let the region described above be the BASE of a solid, whose cross-sections perpendicular to the x – axis are EQUILATERAL TRIANGLES. SET UP AN INTEGRAL TO find the volume of this solid.

2) (Calculator required) Let R be the shaded region bounded by the graph of $y = \ln x$ and the line y = x - 2. on GC: lnx=x-2

Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when R is rotated about:

The line y = -3.

washers: TR-Tr2 $(\pi(\ln x - (-3))^2 - \pi(x-2-(-3))^2 dx$

$$X = .159$$

$$= \begin{cases} 3.146 \\ T \int (\ln x + 3)^2 - (x + 1)^2 dx \end{cases}$$

b. The y axis.

shells .159

The line x = 4

shells: 2172h 2TT (4-x) (lnx-(x-2)) dx

see next page

$$ln X = y \qquad y = x - 2$$

$$X = e^{3} \qquad y + 2 = X$$

$$= \int_{2\pi} (y-3)(y+2-e^{4}) dy$$

$$y=-1.841$$

$$2\pi \int (y+3)(y+2-e^{y}) dy$$

b)
$$R$$

$$X = e$$

$$Y + a = x$$

$$\frac{\text{washers}}{1.146} = \pi R^2 - \pi r^2$$

$$\int \pi (y+2)^2 - \pi (e^y)^2 dy$$

$$y = -1.841$$

$$= \int_{-1.841}^{1.146} (y+2)^2 - e^{2y} dy$$

c)

$$\int_{y=-1.841}^{1.146} \pi (4-e^{y})^{2} - \pi (4-(y+2))^{2} dy$$

$$= \frac{1.1460}{1.841} = \frac{1.1460}{1.841} = \frac{1.841}{1.841}$$